

TRSS－R

TRSS－S

TRSS－T

TRSS－H

产品结构

型号说明

6
安装方式代码
A，B－艮本新
C，D－止旅柚遭豊
E，F－涪动蜾毛构造照垏杘＂4．3安装方式＂

7 丝杆头部型式代码 R 烈（四柱式）
H ${ }^{2}$（栓孔式）
S事（裸校式）
T整（硕授式）
详见＂产品围片＂

3 输入轴联接方式 D－－带电机法兰无代码一基本型

8
倠杆行程 300 mm带有100，200，300，400， $500,600,800,1000 \mathrm{~mm}$ 8椫规格，根撂使用情况遗择，如需要其它长度行得，地可以定絔

9

轴指向
TRSS原列共有A，B，
C四种
TRSSD辱列黄有A，B，
C，D四种
垏思＂静䧿向表示＂

10

护管
P －带护管
无代研一不带护管注：安装方式E，F时无些代确

选型参数

型号 规格	传 动 比	入力辅转速 1800r／min			入力轴转速 1500r／min			入力轴转速 1200r／min			入力辅转速 $900 \mathrm{r} / \mathrm{min}$			入力轴转速 600r／min			入力轴转速 $300 \mathrm{r} / \mathrm{min}$		
		入功敷 （kW）	起升力 （kg）	起升 教度 （m／min）	入功率 （kW）	起升力 （kg）	起升 数度 （m／min）	入功萃 （kW）	起升力 （kg）	起升 教度 （ $\mathrm{m} / \mathrm{min}$ ）	入功率 （kW）	起升力 （kg）	起升预度 （ $\mathrm{m} / \mathrm{min}$ ）	入功草 （kW）	起升力 （kg）	起升 裁度 （m／min）	入功草 （kW）	$\begin{aligned} & \text { 起升力 } \\ & (\mathrm{kg}) \end{aligned}$	起升 教度 （m／min）
TRSS35	1／5	0.69	500	1.80	0.64	550	1.50	0.65	700	1.20	0.63	900	0.90	0.46	1000	0.60	0.37	1000	0.30
	1／10	0.37	500	0.90	0.37	550	0.75	0.37	700	0.60	0.37	950	0.45	0.37	1000	0.30	0.19	1350	0.15
	1／20	0.37	600	0.45	0.37	700	0.38	0.37	900	0.30	0.37	1200	0.23	0.19	1350	0.15	0.19	1350	0.08
TRSS40	1／6	0.98	700	1.80	0.93	800	1.50	0.88	950	1.20	0.91	1300	0.90	0.84	1800	0.60	0.42	1800	0.30
	1／12	0.66	950	0.90	0.64	1100	0.75	0.61	1300	0.60	0.57	1650	0.45	0.46	2000	0.30	0.37	2000	0.15
	1／24	0.37	950	0.45	0.37	1100	0.38	0.37	1300	0.30	0.37	1650	0.23	0.37	2000	0.15	0.19	2000	0.08
TRSS50	1／6	1.39	900	1.80	1.28	1000	1.50	1.24	1200	1.20	1.16	1500	0.90	0.87	1700	0.60	0.54	2100	0.30
	1／12	1.10	1350	0.90	1.01	1500	0.75	0.98	1800	0.60	0.87	2150	0.45	0.58	2150	0.30	0.37	2500	0.15
	1／24	0.78	1800	0.45	0.72	2000	0.38	0.69	2400	0.30	0.55	2550	0.23	0.42	2900	0.15	0.37	2850	0.08
TRSS60	1／8	2.12	1300	1.80	1.97	1450	1.50	1.85	1700	1.20	1.72	2100	0.90	1.66	3050	0.60	1.31	4800	0.30
	1／16	1.12	1300	0.90	1.04	1450	0.75	0.98	1700	0.60	0.95	2200	0.45	0.87	3050	0.30	0.69	4800	0.15
	1／32	0.80	1750	0.45	0.75	1950	0.38	0.69	2250	0.30	0.64	2800	0.23	0.63	4100	0.15	0.48	6400	0.08
TRSS60B	1／8	2.00	1300	1.80	1.86	1450	1.50	1.75	1700	1.20	1.62	2100	0.90	1.57	3050	0.60	1.24	4800	0.30
	1／16	1.06	1300	0.90	0.98	1450	0.75	0.93	1700	0.60	0.89	2200	0.45	0.83	3050	0.30	0.65	4800	0.15
	1／32	0.75	1750	0.45	0.70	1950	0.38	0.65	2250	0.30	0.61	2800	0.23	0.59	4100	0.15	0.46	6400	0.08
TRSS70	1／10	2.66	1400	1.80	2.42	1850	1.50	2.25	1950	1.20	2.12	2450	0.90	1.93	3350	0.60	1.41	4900	0.30
	1／20	1.42	1600	0.90	1.47	1850	0.75	1.37	2250	0.60	1.28	2800	0.45	1.18	3850	0.30	0.86	5600	0.15
	1／40	1.14	2400	0.45	1.17	2800	0.38	1.09	3350	0.30	1.07	4400	0.23	0.93	5750	0.15	0.69	8400	0.08
TRSS100	1／12	3.62	1850	1.80	3.51	2150	1.50	3.39	2600	1.20	3.18	3250	0.90	2.94	4500	0.60	2.09	6400	0.30
	1／18	2.65	1900	1.20	2.68	2300	1.00	2.57	2750	0.80	2.45	3500	0.60	2.19	4700	0.40	1.56	6700	0.20
	1／36	1.66	2200	0.60	1.63	2600	0.50	1.60	3200	0.40	1.47	3900	0.30	1.36	5400	0.20	1.20	9600	0.10
TRSS120	1／12	4.15	1975	1.80	4.02	2300	1.50	3.81	2725	1.20	3.80	3625	0.90	3.48	4975	0.60	2.48	7050	0.30
	1／18	3.20	2125	1.20	3.20	2550	1.00	3.04	3025	0.80	3.03	4025	0.60	2.74	5450	0.40	1.94	7725	0.20
	1／36	2.14	2625	0.60	2.07	3050	0.50	1.98	3650	0.40	1.99	4875	0.30	1.80	6600	0.20	1.40	10300	0.10
TRSS130	1／7	9.47	2100	3.60	9.17	2450	3.00	9.02	2850	2.40	8.58	4000	1.80	8.20	5450	1.20	5.84	7750	0.60
	1／14	5.76	2350	1.80	5.71	2800	1.50	5.57	3300	1.20	5.39	4550	0.90	5.06	6200	0.60	3.57	8750	0.30
	1／28	4.07	3050	0.90	3.89	3500	0.75	3.91	4100	0.60	3.65	5850	0.45	3.48	7800	0.30	2.45	11000	0.15
TRSS150	1／8	16.3	3500	3.60	16.1	4000	3.00	15.8	5400	2.40	15.1	7100	1.80	14.8	9850	1.20	9.70	12950	0.60
	1／16	11.7	4300	1.80	11.6	5400	1.50	10.5	7200	1.20	11.00	9450	0.90	9.62	11800	0.60	7.08	17350	0.30
	1／32	8.65	5500	0.90	9.55	6800	0.75	7.35	10000	0.60	7.53	14300	0.45	7.02	15750	0.30	5.80	26050	0.15

TRSS安装尺寸

轴指向表示 SHAFT DIRECTION

型号 规格	$\begin{gathered} \text { A } \\ \text { B } \\ \text { HS } \end{gathered}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~F} \\ & \mathrm{Z} \end{aligned}$	$\begin{gathered} \mathrm{BC} \\ \mathrm{G} \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \text { CC } \\ \mathbf{K} \end{gathered}$	Tr	$\begin{aligned} & \mathrm{L} \\ & \mathrm{M} \\ & \mathrm{~N} \end{aligned}$	$\begin{gathered} U \\ T \times V \end{gathered}$	丝杆头部型式						
								R型	H 型		S型		T型	
								RA RB RC	HA HB HC	$\begin{aligned} & \mathrm{HD} \\ & \mathrm{HE} \end{aligned}$	SA	$\begin{aligned} & \text { SB } \\ & \text { SC } \\ & \text { SD } \end{aligned}$	TA TB TC	$\begin{gathered} \text { n-TD } \\ \text { TE } \\ \text { TF } \end{gathered}$
TRSS35	$\begin{aligned} & 170 \\ & 110 \\ & 30 \end{aligned}$	$\begin{gathered} 66 \\ 111 \\ 12 \end{gathered}$	$\begin{gathered} 40 \\ 15 \\ 110 \end{gathered}$	$\begin{aligned} & 35 \\ & 38 \end{aligned}$		$\begin{gathered} 50 \\ 90 \\ 135 \end{gathered}$	$\begin{gathered} 15 \\ 5 \times 3 \end{gathered}$	$\begin{aligned} & 26 \\ & 165 \\ & 55 \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \\ & 12 \end{aligned}$	$\begin{gathered} 165 \\ 55 \end{gathered}$	$\begin{aligned} & \stackrel{\oplus}{\dot{x}} \\ & \frac{0}{\Sigma} \\ & \frac{\infty}{\Sigma} \end{aligned}$	$\begin{gathered} 28 \\ 150 \\ 40 \end{gathered}$	$\begin{aligned} & 88 \\ & 70 \\ & 10 \end{aligned}$	$\begin{gathered} 4-\Phi 10 \\ 135 \\ 25 \end{gathered}$
TRSS40	$\begin{gathered} 220 \\ 140 \\ 40 \end{gathered}$	$\begin{gathered} 80 \\ 125 \\ 12 \end{gathered}$	$\begin{gathered} 50 \\ 18 \\ 130 \end{gathered}$	$\begin{aligned} & 40 \\ & 42 \end{aligned}$		$\begin{gathered} 57 \\ 110 \\ 155 \end{gathered}$	$\begin{gathered} 18 \\ 6 \times 3.5 \end{gathered}$	$\begin{gathered} 32 \\ 195 \\ 65 \end{gathered}$	$\begin{aligned} & 20 \\ & 25 \\ & 14 \end{aligned}$	$\begin{gathered} 195 \\ 65 \end{gathered}$	$\begin{aligned} & \frac{n}{x} \\ & \underset{\sim}{N} \\ & \underset{\Sigma}{v} \end{aligned}$	$\begin{gathered} 32 \\ 180 \\ 50 \end{gathered}$	$\begin{aligned} & 98 \\ & 80 \\ & 13 \end{aligned}$	$\begin{gathered} 4-\Phi 10 \\ 160 \\ 30 \end{gathered}$
TRSS50	$\begin{aligned} & 220 \\ & 140 \\ & 40 \end{aligned}$	$\begin{gathered} 90 \\ 140 \\ 14 \end{gathered}$	$\begin{gathered} 50 \\ 18 \\ 130 \end{gathered}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	$\begin{aligned} & \infty \\ & x \\ & \infty \\ & \infty \\ & \text { e } \end{aligned}$	$\begin{gathered} 60 \\ 120 \\ 170 \end{gathered}$	$\begin{gathered} 18 \\ 6 \times 3.5 \end{gathered}$	$\begin{gathered} 38 \\ 195 \\ 65 \end{gathered}$	$\begin{aligned} & 25 \\ & 25 \\ & 16 \end{aligned}$	$\begin{gathered} 195 \\ 65 \end{gathered}$	$\begin{aligned} & \stackrel{n}{x} \\ & \stackrel{1}{x} \\ & \frac{0}{2} \end{aligned}$	$\begin{gathered} 35 \\ 180 \\ 50 \end{gathered}$	$\begin{gathered} 114 \\ 90 \\ 13 \end{gathered}$	$\begin{gathered} 4-\Phi 12 \\ 160 \\ 30 \end{gathered}$
TRSS60	$\begin{aligned} & 256 \\ & 176 \\ & 40 \end{aligned}$	$\begin{gathered} 100 \\ 190 \\ 18 \end{gathered}$	$\begin{gathered} 60 \\ 20 \\ 160 \end{gathered}$	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & \infty \\ & \times \\ & \times \\ & \stackrel{+}{2} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{gathered} 90 \\ 140 \\ 230 \end{gathered}$	$\begin{gathered} 25 \\ 8 \times 4 \end{gathered}$	$\begin{gathered} 46 \\ 225 \\ 65 \end{gathered}$	$\begin{aligned} & 32 \\ & 32 \\ & 20 \end{aligned}$	$\begin{gathered} 255 \\ 95 \end{gathered}$	$\begin{aligned} & \stackrel{n}{x} \\ & \underset{N}{\infty} \\ & \stackrel{N}{\Sigma} \end{aligned}$	$\begin{gathered} 40 \\ 220 \\ 60 \end{gathered}$	$\begin{gathered} 138 \\ 100 \\ 16 \end{gathered}$	$\begin{gathered} 4-\Phi 14 \\ 200 \\ 40 \end{gathered}$
TRSS60B	$\begin{gathered} 264 \\ 184 \\ 40 \end{gathered}$	$\begin{gathered} 110 \\ 190 \\ 18 \end{gathered}$	$\begin{gathered} 60 \\ 20 \\ 160 \end{gathered}$	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & \infty \\ & \times \\ & \underset{\sim}{\kappa} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{gathered} 90 \\ 150 \\ 230 \end{gathered}$	$\begin{gathered} 25 \\ 8 \times 4 \end{gathered}$	$\begin{gathered} 52 \\ 225 \\ 65 \end{gathered}$	$\begin{aligned} & 36 \\ & 32 \\ & 24 \end{aligned}$	$\begin{gathered} 255 \\ 95 \end{gathered}$	$\begin{aligned} & \frac{\infty}{x} \\ & \text { \& } \\ & \frac{m}{2} \end{aligned}$	$\begin{gathered} 45 \\ 220 \\ 60 \end{gathered}$	$\begin{gathered} 148 \\ 110 \\ 20 \end{gathered}$	$\begin{gathered} 4-\Phi 18 \\ 210 \\ 50 \end{gathered}$
TRSS70	$\begin{gathered} 316 \\ 216 \\ 50 \end{gathered}$	$\begin{gathered} 140 \\ 210 \\ 18 \end{gathered}$	$\begin{gathered} 70 \\ 25 \\ 180 \end{gathered}$	$\begin{aligned} & 70 \\ & 75 \end{aligned}$	$\begin{aligned} & \stackrel{0}{x} \\ & \text { ! } \\ & \stackrel{\varphi}{\circ} \end{aligned}$	$\begin{gathered} 95 \\ 180 \\ 250 \end{gathered}$	$\begin{gathered} 28 \\ 8 \times 4 \end{gathered}$	$\begin{gathered} 65 \\ 250 \\ 70 \end{gathered}$	$\begin{aligned} & 44 \\ & 35 \\ & 26 \end{aligned}$	$\begin{aligned} & 295 \\ & 115 \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{x} \\ & \stackrel{n}{x} \\ & \stackrel{\leftrightarrow}{\Sigma} \end{aligned}$	$\begin{gathered} 55 \\ 260 \\ 80 \end{gathered}$	$\begin{aligned} & 178 \\ & 125 \\ & 25 \end{aligned}$	$\begin{gathered} 4-\Phi 21 \\ 235 \\ 55 \end{gathered}$
TRSS100	$\begin{gathered} 390 \\ 260 \\ 65 \end{gathered}$	$\begin{gathered} 190 \\ 260 \\ 22 \end{gathered}$	$\begin{gathered} 85 \\ 30 \\ 220 \end{gathered}$	$\begin{gathered} 100 \\ 85 \end{gathered}$	$\begin{aligned} & \frac{N}{x} \\ & \stackrel{n}{\Sigma} \\ & \stackrel{N}{2} \end{aligned}$	$\begin{aligned} & 110 \\ & 230 \\ & 310 \end{aligned}$	$\begin{gathered} 32 \\ 10 \times 5 \end{gathered}$	$\begin{gathered} 75 \\ 295 \\ 75 \end{gathered}$	$\begin{aligned} & 56 \\ & 44 \\ & 35 \end{aligned}$	$\begin{aligned} & 355 \\ & 135 \end{aligned}$	N \times $\stackrel{\circ}{\circ}$ ¿	$\begin{gathered} 65 \\ 300 \\ 80 \end{gathered}$	$\begin{gathered} 188 \\ 140 \\ 28 \end{gathered}$	$\begin{gathered} 4-\oplus 21 \\ 285 \\ 65 \end{gathered}$
TRSS 120	$\begin{gathered} 420 \\ 290 \\ 65 \end{gathered}$	$\begin{aligned} & 210 \\ & 305 \\ & 22 \end{aligned}$	$\begin{gathered} 100 \\ 30 \\ 260 \end{gathered}$	$\begin{aligned} & 120 \\ & 105 \end{aligned}$		$\begin{aligned} & 130 \\ & 260 \\ & 355 \end{aligned}$	$\begin{gathered} 35 \\ 10 \times 5 \end{gathered}$	$\begin{gathered} 80 \\ 355 \\ 95 \end{gathered}$	$\begin{aligned} & 60 \\ & 54 \\ & 38 \end{aligned}$	$\begin{aligned} & 410 \\ & 150 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \times \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{2}{2} \end{aligned}$	$\begin{gathered} 70 \\ 360 \\ 100 \end{gathered}$	$\begin{gathered} 218 \\ 170 \\ 30 \end{gathered}$	$\begin{gathered} 4-\Phi 25 \\ 330 \\ 70 \end{gathered}$
TRSS 130	480 340 70	$\begin{gathered} 240 \\ 355 \\ 22 \end{gathered}$	$\begin{gathered} 120 \\ 30 \\ 315 \end{gathered}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \stackrel{+}{\circ} \\ & \stackrel{\circ}{5} \end{aligned}$	$\begin{aligned} & 160 \\ & 300 \\ & 415 \end{aligned}$	$\begin{gathered} 45 \\ 14 \times 5.5 \end{gathered}$	$\begin{gathered} 90 \\ 430 \\ 115 \end{gathered}$	$\begin{aligned} & 70 \\ & 64 \\ & 45 \end{aligned}$	$\begin{aligned} & 480 \\ & 165 \end{aligned}$	$\begin{aligned} & \stackrel{N}{X} \\ & \stackrel{\circ}{\Sigma} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{gathered} 75 \\ 435 \\ 120 \end{gathered}$	$\begin{gathered} 248 \\ 200 \\ 32 \end{gathered}$	$\begin{gathered} 4-\Phi 27 \\ 390 \\ 75 \end{gathered}$
TRSS150	$\begin{gathered} 550 \\ 360 \\ 95 \end{gathered}$	$\begin{gathered} 250 \\ 385 \\ 27 \end{gathered}$	$\begin{gathered} 125 \\ 35 \\ 345 \end{gathered}$	$\begin{aligned} & 150 \\ & 135 \end{aligned}$	$\begin{aligned} & \frac{\varphi}{x} \\ & 8 \\ & \frac{8}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 170 \\ & 320 \\ & 455 \end{aligned}$	$\begin{gathered} 50 \\ 14 \times 5.5 \end{gathered}$	$\begin{aligned} & 100 \\ & 485 \\ & 140 \end{aligned}$	$\begin{aligned} & 80 \\ & 70 \\ & 55 \end{aligned}$	$\begin{aligned} & 545 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{\text { x }}{2} \\ & \text { ¿ } \end{aligned}$	$\begin{aligned} & 100 \\ & 495 \\ & 150 \end{aligned}$	$\begin{gathered} 358 \\ 280 \\ 35 \end{gathered}$	$\begin{gathered} 6-\Phi 27 \\ 445 \\ 100 \end{gathered}$

TRSSD安装尺寸

轴指向表示

型号规格	入功率 （kw）	法兰代号	$A B$	AH	LA	LB	LC	LE	LZ	D	Q	$\mathrm{T} \times \mathrm{V}$	电机长度
TRSSD40	0.37	71B5	110	93	130	110	160	4	M8	©14	33	5×16.3	225
TRSSD50	0.37	71B5	110	85	130	110	160	4	M8	Ф14	33	5×16.3	225
TRSSD60	0.75	80B5	128	120	165	130	200	4.5	M10	Ф19	43	6×21.8	225
	1.5	90B5								Ф24	53	8×27.3	290
TRSSD60B	0.75	$80 B 5$	132	120	163	130	200	4.5	M10	Ф19	43	6×21.8	255
	1.5	90B5								Ф24	53	8×27.3	290
TRSSD70	1.5	$90 \mathrm{B5}$	158	140	165	130	200	4.5	M10	©24	53	8×27.3	290

选型方法

选型要素
总当量载荷计算
Ws $=$ Wmax \times fs
Ws－－岃量裁荷 Wmax－－最大教荷 fs——使用称教（详兄附表1）

> 表1使用示敋fs

便用工况	平䴔裁荷，负荷掼性小	轻微冲表琙荷，负荷鏆性中等	㘧冲击负何，负荷鏆性大
	$1.0 \sim 1.3$	1．3－1．5	$1.5 \sim 3.0$

4．1．2单台升降机当量裁信的计筧

W＝ws／（S $\times \mathrm{fd}$ ）
W－－单台当量裁荷 Ws－－当量戴荷 S－－联动台数 fd－－联动系教（详见腑表2）

表2联动而敋fs

联动台数	1	2	3	4	$5-8$
使用系数	1	0.9	0.9	0.8	0.7

整定升降机型号

根据機重，升降速度，行程，驱动源后暂时造定升倳机整号（详锖可參考＂5，选型参故＂）。丝杆行程选定

在充分考虑丝杆运动慣性，各种原陗辁出部件筞各种情况下，造拝有充分余量的丝杆行程。
䍃杆计算（详见表3，鲌杆行程用L表示，单位（unit）：mm）

表3丝杆计算

型号	丝杆直经	护管长	丝杆头部S酷		丝杆头部H製		丝杆头部R製		丝杆头部T製	
			总长 $=L+S C$	平长＝总长－SD	E长 $=L+H B+H D$	訝均米＋18－1E	总长 $=L+\mathrm{RB}$	牙长＝总长－RD	总长 $=L+T E$	牙长＝㤩长－TF
TRSS35	Tr 26×5	L＋55	$L+150$	总长－40	$L+20+165$	总长－20－55	$L+165$	总长－55	$L+135$	总长－25
TRSS40	Tr 32×6	$\mathrm{L}+60$	$L+180$	总长－50	$L+25+195$	总长－25－65	$L+195$	总扰－65	L＋160	总长－30
TRSS50	Tr38 $\times 6$	$\mathrm{L}+60$	$L+180$	总长－50	$L+25+195$	总长－25－65	$L+195$	总长－65	$L+160$	总长－30
TRSS60	$\mathrm{T} 46 \times 8$	$\mathrm{L}+65$	$L+220$	总长－60	$L+32+255$	总长－32－95	$L+225$	总长－65	$L+200$	总长－40
TRSS60B	Tr52 $\times 8$	$L+65$	$L+220$	总长－60	$L+32+255$	总长－32－95	$L+225$	总长－65	$L+210$	总长－50
TRSS70	Tr 65×10	$L+75$	$L+260$	总长－80	$L+35+295$	怘长－35－115	$L+250$	总长－70	L＋235	总长－55
TRSS100	Tr75 $\times 12$	$L+85$	L＋300	总长－80	$L+44+355$	总长－44－135	$L+295$	总长－75	L＋285	总长－65
TRSS120	Tr 80×12		$L+360$	总长－100	$L+54+410$	总长－54－150	$L+355$	总长－95	$L+330$	总长－70
TRSS130	Tr90× 14		L＋435	总长－120	$L+64+480$	总长－64－165	L＋430	总长－115	$L+390$	总长－75
TRSS150	$\operatorname{Tr} 100 \times 16$		L＋495	总长－150	$L+70+545$	总长－70－200	$L+485$	总张－140	$L+445$	总长－100

橏杆稳定性校核

```
Pcr=fm\times( d
应砤保Pcr>W W Sf(一舫Sf=4)
```



```
La--作用点间距离 (mm) W--牮台升降机当量裁荷 (N) St--安全系教(一般取4)
```

表4长度系数（ fm ）

	底座園定，轱圽自由tm＝2．5 $\times 10^{4}$	

丝杆转速校核

```
nc=96\times1\mp@subsup{0}{}{6}\times\textrm{fn}\times6/\mp@subsup{L}{}{2}
应碲保nc>n1/i
nc--丝杆临界转速(r/min) fn--支㙅系軲(详见陏表6) d--丝杆底径(mm)(详见㤢表5)
Lb--支操间距商(mm)
n1--输入转速(r/min)
i--减速比
```


输入功率校核

```
p=ni\timesP1\timesw/ (9549\times2\pi\timesi\times \eta )
```


㗫确保P＜P続

p－－所需输入功率（kW） n 1 －－输入转速（ $\mathrm{r} / \mathrm{min}$ ） $\mathrm{P}_{1}--$ 丝杆䖵距（ mm ）

表5 丝杆底径d

整号	TRSS35	TRSS40	TRSS50	TRSS60	TRSS60B	TRSS70	TRSS100	TRSS120	TRSS130
TRSS150									
丝籸底经	20.5	25	31	37	43	54	62	67	74

表6 丝杆系数fn

轴端自由fn＝0．36	

TRSS系列蜗轮丝杆升降机

选型示例
两台联动

1型

T型

四台联动

T发展型

驱动源

八台联动
H发展型

安装方式
基本型

说明：
1，基本形式：鍉母（蜡轮）转动丝杆上下移动，此为普通型升降机安装方式：
捿注意：丝杆在升降时，会产生旅转力，所以必須儌好防止根转的睢施。
2，止旅构造制：崌用于厢竝无连接下运转等各种不能实现防止族转的圾合。
时，辅踹度采用支理方式，可得到很好的传动效果。

TRSS系列蜎轮丝杆升降机

使用说明

产品说明
TRSS系列䇎轮丝杆升隊机（又名千斤原）
具有结构埭凑，体积小的特点；
安装方便，形式多；
可譩性高，寿命长；
具有起升，下降及借助辅件推遘，賏转等多杉功能；
可单台使用，也可多台组成使用；
动力源广泛，可用电动机或其它动力直接带动，也可以用手动；

使用注意事项

升降机工作时虚控制减速机表而和升降绳舟表面缊度在 $-15^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$ ：
升降机不得连续造转，单台升降机的负荷时间電（T \％）以 30 分钟为单位计算，不得超过 20% ；

$$
\text { 负荷时间辈 } \mathrm{T} \%=\frac{1 \text { 动作周期的工作时间 }}{1 \text { 动作周期的工作时间 }+1 \text { 动作周期的埽政时间 }} \times 100 \%
$$

必顸保证有充足的㢮动源动力：
升降机髏论上有自锁功能，但在椇动冲击较大的场合会造成自锁功能失员，请务必加制动装置：
升降机使用环境：

倠用环埌	室内无雨水僂入的场所
周围空气	灰尘为一䑤工厂状况
环境温度	$-15^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}$
相对湿度	85% 以下

升降机工作时一般不允许有横向裁荷，若有横向域僻时，清加导向装雵。

油品润滑

浧滑油（脂）选用表

淔杆挠速（ $\mathrm{r} / \mathrm{min}$ ）	
1500－1800	ISO VG680
$300-1500$	ZNG－1嘠ZNG－2

注：合成钙钠基润清脂温庭范围－20 C $-100^{\circ} \mathrm{C}$

䇠滑油（脂）注油量（1）

规格	TRSS35	TRSS40	TRSS50	TRSS60	TRSS60B	TRSS70B	TRSS100	TRSS120	TRSS130
TRSS150									
注油量	0.06	0.1	0.2	0.35	0.4	0.5	1.5	2.2	3.5

故障分析

故障情况	故障原因	解决办法
振动	原动机与升降机连接不当	淍整至适当位置，重新正确固紧
	䤢轮副齿部廖琻或损伤	更换鈵轮副（需要时本公司配合）
	轴承摩损	更换辒承
	蜉检松脱	固紧娭检
杂音	轴承损伤或闻隌过大	更换轴冰
	蜺轮副椣合不良	修整齿面或更换䂏轮副（请与本公司联系）
	洞滑油（脂）过少	补加润滑油（覧）
瞞油	油封唇口磨损	更换油封
	油封档轴颈磨损	更换输入较或䤢轮
蜗轮副齿面磨损过快	超负荷运转	洞整至适当负荷
	润滑油（脂）不符合要求	按油品润滑更换润滑油（脂）
	润滑油（脂）过少	补加润滑油（矤）
	末按规定适时换油，润滑油劣化	按规定要求适时换油
	运转温度过高	采取合适措施，隆低环境温度
丝杆副齿面磨损过快	超负荷运转	调整至适当负荷
	润㴆脂干枯或变质	去污㩭净，重新加阔滑脂
	有横向韯荷	加导向装置

注：如果发生其他故噇无法解决时，请随时与我们联系，以便提供咨询服务。

